Description

The Hydramist® range of "Automatic and Manual Release" (AMR) catering equipment nozzles is designed to create high pressure water mist with enough flow and velocity to extinguish fires in deep fat fryers, catering equipment, and associated extract plenums and ducts.

Each nozzle incorporates a thermally activated bulb which is rated at 93 - 182ºC. Upon activation of the bulb by heat, or alternatively via the manual release call point connected to the 15 AMPU pump, scientifically configured micro-outlets produce a flow rate and spray pattern determined as being able to extinguish fires by the Loss Prevention Certification Board LPS1223 Approval Scheme.

Hydramist® AMR nozzles have been tested over a range of heights encompassing close range installation to ventilated ceiling extract installation and can be installed over a wide variety of catering equipment, details of installation parameters are available upon request.

Hydramist® nozzles are designed to meet the specific fire protection needs of the application and the catering industry. Based on information supplied by the client, an approved designer working from the Hydramist® design manual, determines the detailed specification of the number and type of nozzles to meet the specific fire risk.

Applications

Catering equipment including:-

- Deep fat fryers, fat cooker
- 4 or 6 ring hobs/burners
- Griddles
- Bratt pans
- Salamander and chargrill
- Oven ranges
- Pizza ovens
- Char broiler
- Chinese wok ranges

- Mesquite grill
- Rotisserie
- Open tandoori
- Extract canopies
- Ventilated ceiling extract systems
- Extract plenums
- Extract ducts
Hydramist®
AMR Catering Nozzle (LPS1223)

Technical Description and Services

Each Hydramist® “automatic actuation” catering equipment nozzle will consist of the following components:

- 1 x Stainless steel pendant mounted nozzle body
- 1 x Set of micro-outlets
- 1 x Frangible bulb
- 1 x 80 micron filter

GLASS BULB TEMPERATURE RATINGS

<table>
<thead>
<tr>
<th>BULB ACTIVATION TEMPERATURE</th>
<th>BULB COLOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>200°F 93°C</td>
<td>Green</td>
</tr>
<tr>
<td>220°F 104°C</td>
<td>Turquoise</td>
</tr>
<tr>
<td>286°F 141°C</td>
<td>Blue</td>
</tr>
<tr>
<td>360°F 182°C</td>
<td>Purple</td>
</tr>
</tbody>
</table>